Методы решения задач обучения с подкреплением

Метод временных разностей (TD)

Методы решения задач обучения с подкреплением

- Методы динамического программирования
 - Требуют модели
 - Обновляют оценку ценности одного состояния на основе оценок для других состояний.
- □ Методы Монте-Карло
 - Обучаются взаимодействуя со средой
 - При расчёте оценки ценности одного состояния не используют оценки для других состояний

Прогнозирование методом TD

- □ Как и Монте-Карло, методы TD оценивают $V(s_t)$ на основе того, что произошло после посещения s_t .
- Монте-Карло ждёт конца эпизода и использует обновление

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t - V(s_t) \right],$$

□ Метод TD(0) ждёт один шаг и делает обновление

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right].$$

Прогнозирование методом TD

$$V^{\pi}(s) = E_{\pi}\{R_{t}|s_{t}\!=\!s\}$$
 Монте-Карло
$$= E_{\pi}\!\!\left\{\sum_{k=0}^{\infty}\gamma^{k}r_{t+k+1} \;\middle|\; s_{t}\!=\!s\right\}$$

$$= E_{\pi}\!\!\left\{r_{t+1} + \gamma\sum_{k=0}^{\infty}\gamma^{k}r_{t+k+2} \;\middle|\; s_{t}\!=\!s\right\}$$

$$= E_{\pi}\!\!\left\{r_{t+1} + \gamma V^{\pi}(s_{t+1}) \;\middle|\; s_{t}\!=\!s\right\}.$$
 TD

Алгоритм TD(0) оценки стратегии

Вход:

 π - оцениваемая стратегия

Инициализация:

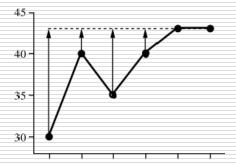
V(s) – произвольно

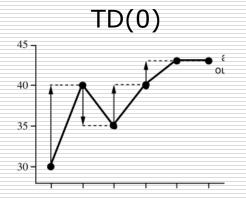
Повторять для всех эпизодов $s \leftarrow$ начальное состояние Для каждого шага эпизода $a \leftarrow$ действие для s согласно π Выполнить a, узнать s' и r. $V(s) \leftarrow V(s) + \alpha[r + \gamma V(s') - V(s)]$ $s \leftarrow s'$

Прогноз методом TD. Пример

	Прошло (мин)	Прогноз остатка	Прогноз общее
Вышел с работы	0	30	30
В машине. Дождь.	5	35	40
Проехали по трассе.	20	15	35
Упёрлись в грузовик.	30	10	40
На своей улице	40	3	43
Дома	43	0	43

Монте-Карло

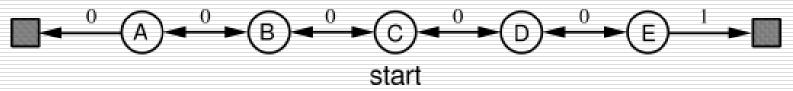


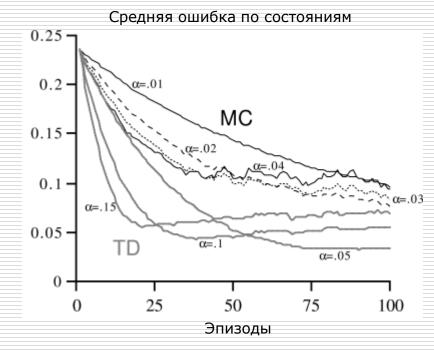


Преимущества TD

- + Не требуется модель
- + Подходят для реализации в онлайн режиме
- + Учатся непосредственно во время эпизода
- + Сходится к V^{π} .

Пример – случайное брожение





Пакетный режим

- \square Ждём до конца эпизода, запоминая $\Delta V(s)$.
- \square По завершению эпизода прибавляем к V(s) сумму запомненных изменений.
- Повторяем много раз для имеющихся данных.
- При достаточно небольшом α TD(0) сходится к некоторому ответу.
- □ Монте-Карло тоже сходится, но к другому ответу – даёт минимум на обучающей выборке.

Пакетный режим. Пример.

□ Пусть есть 8 эпизодов

A,0,B,0

B,1

B,1

B,1

B,1

B,1

B,0

B,1

Чему равно V(B)?

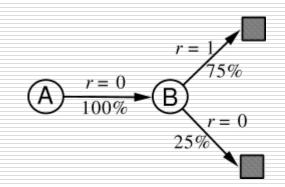
$$V(B) = \frac{3}{4}$$

Чему равно V(A)?

Монте-Карло:

V(A)=0

Пакетный TD(0): $V(A)=\frac{3}{4}$



Управляем методом TD следуя оцениваемой стратегии

- Используем обобщенную итерацию стратегий
- Оцениваем функцию ценности действий

$$(s_t)$$
 s_{t+1} s_{t+1} s_{t+1} s_{t+2} s_{t+2} s_{t+2} s_{t+2} s_{t+2} s_{t+2}

Правило обновления

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right].$$

Алгоритм SARSA

Инициализация:

Q(s,a) – произвольно

Повторять для всех эпизодов

 $s \leftarrow$ начальное состояние

 $a \leftarrow \varepsilon$ -жадное по Q действие для s.

Для всех шагов эпизода

Выполнить a, узнать s' и r.

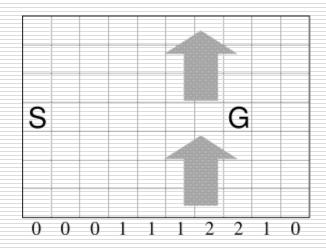
 $a' \leftarrow \varepsilon$ -жадное по Q действие для s'.

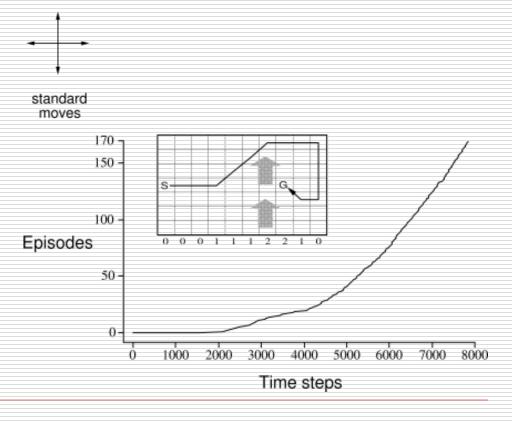
$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)].$$

$$s \leftarrow s'$$

$$a \leftarrow a'$$

Пример - ветер





TD(0). Управляем и оцениваем разные стратегии.

■ Watkins, 1989. Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right].$$

- \square Аппроксимируем Q^* .
- \square Сходится, если агент продолжает посещать все пары (s,a).

Алгоритм Q-learing.

Инициализация:

Q(s,a) – произвольно

 $s \leftarrow$ начальное состояние

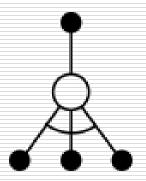
Для всех шагов эпизода

 $a \leftarrow \varepsilon$ -жадное по Q действие для s.

Выполнить a, узнать s' и r.

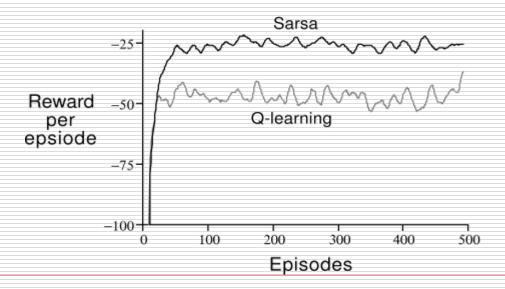
$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)].$$

$$s \leftarrow s'$$

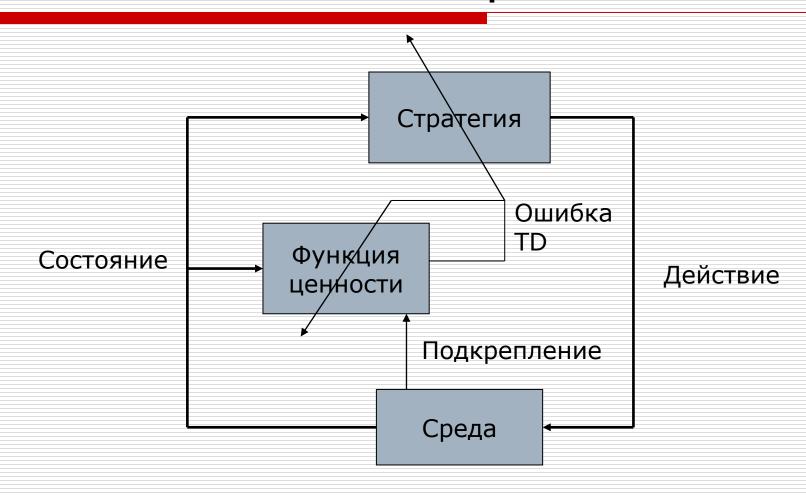


Q-Learning. Пример.





- Храним и стратегию и функцию ценности.
- □ Стратегия деятель.
- Функция ценности критик.
- В роли критики выступает ошибка ТD, используемая для корректировки обеих структур.



- □ Критик
 - lacksquare Функция ценности состояний V
 - Ошибка TD:

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t),$$

- Деятель
 - Предпочтения выбора действий

$$\pi_t(s, a) = Pr\{a_t = a \mid s_t = s\} = \frac{e^{p(s, a)}}{\sum_b e^{p(s, b)}},$$

Изменение предпочтений

$$p(s_t, a_t) \leftarrow p(s_t, a_t) + \beta \delta_t,$$

$$p(s_t, a_t) \leftarrow p(s_t, a_t) + \beta \delta_t \left[1 - \pi_t(s_t, a_t) \right].$$

- □ Были широко распространены на ранних этапах, позднее внимание переключилось на методы, использующие функции ценности действий.
- Требуют минимальных расчётов для выбора действия.
- Могут находить стохастические стратегии: оптимальные вероятности выполнения действий.
- Интересны в плане биологических аналогий.

R-learning

- Расширенный вариант задачи обучения с подкреплением:
 - Не используется дисконт
 - Действие не разбивается на конечные эпизоды
 - Хотим получать максимальный возврат на каждом шаге.
- \square Функции ценности для стратегии π определяются относительно среднего ожидаемого подкрепления:

$$\rho^{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} E_{\pi} \{ r_t \},$$

 \square Если процесс является эргодическим, то ρ^{π} не зависит от начального состояния.

R-learning

 Функция ценности состояний и действий определяются в зависимости от характера перехода к среднему значению:

$$\tilde{V}^{\pi}(s) = \sum_{k=1}^{\infty} E_{\pi} \{ r_{t+k} - \rho^{\pi} | s_t = s \},$$

$$\tilde{Q}^{\pi}(s,a) = \sum_{k=1} E_{\pi} \{ r_{t+k} - \rho^{\pi} | s_t = s, a_t = a \}.$$

Оптимальными будем считать стратегии, у которых ρ^{π} максимально.

R-learning

Инициализация

$$\rho$$
, $Q(s,a)$ - произвольно для всех s,a

Повторять бесконечно

 $s \leftarrow$ текущее состояние

Выбрать действие a согласно стратегии поведения (например, ε -жадной)

Выполнить a, узнать r и s'.

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r - \rho + \max_{a'} Q(s',a') - Q(s,a)]$$

Если
$$Q(s,a) = \max_{a} Q(s,a)$$
 то

$$\rho \leftarrow \rho + \beta [r - \rho + \max_{a'} Q(s', a') - \max_{a} Q(s, a)]$$

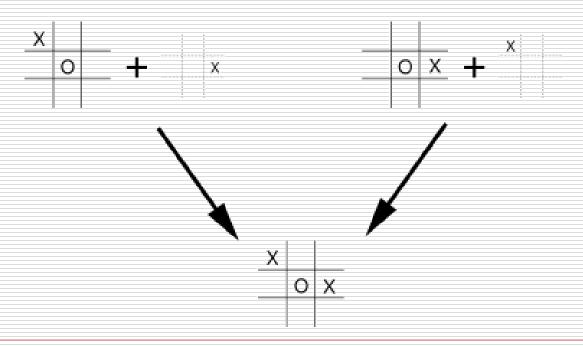
Игры и пост-состояния

 □ В некоторых случаях, например во многих играх, удобно оценивать функцию ценности не от состояния (до хода), а от результата нашего хода – пост-состояния.

 Такой подход работает, если известна начальная динамика среды, но не вся динамика (мы не знаем ход соперника).

Игры и пост-состояния

 Этот подход эффективен, так как разные пары (состояние, действие) могут приводить к одному пост-состоянию.



Метод временных разностей. Итоги.

- Сохраняется идея обобщенной итерации стратегий
- Так как для оценки используются опыт агента, то мы должны балансировать исследование и использование знаний
 - Одна стратегия: Sarsa и деятель-критик
 - Разные стратегии: Q-learning и R-learning
- Мы рассмотрели простой случай:
 - Одношаговый
 - Табличный
 - Не использующий модель
- Могут использоваться для прогнозирования динамических процессов